Show simple item record

Authordc.contributor.authorNavarro, Claudio A. 
Authordc.contributor.authorOrellana, Luis H. es_CL
Authordc.contributor.authorMauriaca, Cecilia es_CL
Authordc.contributor.authorJerez, Carlos 
Admission datedc.date.accessioned2011-05-03T18:08:06Z
Available datedc.date.available2011-05-03T18:08:06Z
Publication datedc.date.issued2009-07-30
Cita de ítemdc.identifier.citationAPPLIED AND ENVIRONMENTAL MICROBIOLOGY, Volume: 75, Issue: 19, Pages: 6102-6109, 2009es_CL
Identifierdc.identifier.issn0099-2240
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/119185
General notedc.descriptionArtículo de publicación ISI
Abstractdc.description.abstractThe acidophilic Acidithiobacillus ferrooxidans can resist exceptionally high copper (Cu) concentrations. This property is important for its use in biomining processes, where Cu and other metal levels range usually between 15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment, a bioinformatic search of its genome showed the presence of at least 10 genes that are possibly related to Cu homeostasis. Among them are three genes coding for putative ATPases related to the transport of Cu (A. ferrooxidans copA1 [copA1Af], copA2Af, and copBAf), three genes related to a system of the resistance nodulation cell division family involved in the extraction of Cu from the cell (cusAAf, cusBAf, and cusCAf), and two genes coding for periplasmic chaperones for this metal (cusFAf and copCAf). The expression of most of these open reading frames was studied by real-time reverse transcriptase PCR using A. ferrooxidans cells adapted for growth in the presence of high concentrations of Cu. The putative A. ferrooxidans Cu resistance determinants were found to be upregulated when this bacterium was exposed to Cu in the range of 5 to 25 mM. These A. ferrooxidans genes conferred to Escherichia coli a greater Cu resistance than wild-type cells, supporting their functionality. The results reported here and previously published data strongly suggest that the high resistance of the extremophilic A. ferrooxidans to Cu may be due to part or all of the following key elements: (i) a wide repertoire of Cu resistance determinants, (ii) the duplication of some of these Cu resistance determinants, (iii) the existence of novel Cu chaperones, and (iv) a polyP-based Cu resistance system.es_CL
Patrocinadordc.description.sponsorshipThis work was supported by FONDECYT 1070986 and in part by ICM P-05-001-F project and a doctoral fellowship from CONICYT to C.A.N.es_CL
Lenguagedc.language.isoenes_CL
Publisherdc.publisherAMER SOC MICROBIOLOGYes_CL
Keywordsdc.subjectESCHERICHIA-COLI K-12es_CL
Títulodc.titleTranscriptional and Functional Studies of Acidithiobacillus ferrooxidans Genes Related to Survival in the Presence of Copperes_CL
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record