Transcriptional and Functional Studies of Acidithiobacillus ferrooxidans Genes Related to Survival in the Presence of Copper
Artículo
Open/ Download
Publication date
2009-07-30Metadata
Show full item record
Cómo citar
Navarro, Claudio A.
Cómo citar
Transcriptional and Functional Studies of Acidithiobacillus ferrooxidans Genes Related to Survival in the Presence of Copper
Abstract
The acidophilic Acidithiobacillus ferrooxidans can resist exceptionally high copper (Cu) concentrations. This
property is important for its use in biomining processes, where Cu and other metal levels range usually between
15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment,
a bioinformatic search of its genome showed the presence of at least 10 genes that are possibly related to Cu
homeostasis. Among them are three genes coding for putative ATPases related to the transport of Cu (A.
ferrooxidans copA1 [copA1Af], copA2Af, and copBAf), three genes related to a system of the resistance nodulation
cell division family involved in the extraction of Cu from the cell (cusAAf, cusBAf, and cusCAf), and two genes
coding for periplasmic chaperones for this metal (cusFAf and copCAf). The expression of most of these open
reading frames was studied by real-time reverse transcriptase PCR using A. ferrooxidans cells adapted for
growth in the presence of high concentrations of Cu. The putative A. ferrooxidans Cu resistance determinants
were found to be upregulated when this bacterium was exposed to Cu in the range of 5 to 25 mM. These A.
ferrooxidans genes conferred to Escherichia coli a greater Cu resistance than wild-type cells, supporting their
functionality. The results reported here and previously published data strongly suggest that the high resistance
of the extremophilic A. ferrooxidans to Cu may be due to part or all of the following key elements: (i) a wide
repertoire of Cu resistance determinants, (ii) the duplication of some of these Cu resistance determinants, (iii)
the existence of novel Cu chaperones, and (iv) a polyP-based Cu resistance system.
General note
Artículo de publicación ISI
Patrocinador
This work was supported by FONDECYT 1070986 and in part by
ICM P-05-001-F project and a doctoral fellowship from CONICYT to
C.A.N.
Quote Item
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Volume: 75, Issue: 19, Pages: 6102-6109, 2009
Collections