About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Computer simulation study of amorphous compounds: structural and vibrational properties

Artículo
Thumbnail
Open/Download
IconGutierrez_Gonzalo.pdf (846.6Kb)
Publication date
2010-05-15
Metadata
Show full item record
Cómo citar
Gutiérrez Gallardo, Gonzalo
Cómo citar
Computer simulation study of amorphous compounds: structural and vibrational properties
.
Copiar
Cerrar

Author
  • Gutiérrez Gallardo, Gonzalo;
  • Menéndez Proupin, Eduardo;
  • Loyola, Claudia;
  • Peralta, Joaquín;
  • Davis, Sergio;
Abstract
Molecular dynamic (MD) simulations, both classical and ab initio, of amorphous GeO2 (germania), Al2O3 (alumina), and CdTeO compounds are presented. We focus our attention on the structural and vibrational properties, giving an atomic description of the short- and intermediate-range order. Amorphous germanium oxide under pressure was studied by means of classical MD simulations. At normal density, the analysis of the interatomic distances reveals that in the amorphous state there is a short-range order dominated by a slightly distorted (GeO4) tetrahedron. Beyond that, there is an intermediaterange order composed by vertex-sharing tetrahedra. As density increases, there is a structural transformation, from a short-range order defined by the basic tetrahedron to a basic octahedron. Consistent with this picture, the vibrational density of states also presents big changes, where the low frequency band shrinks, and the high frequency becomes wider and flatter. In the case of alumina, both classical and first principles MD calculations of amorphous Al2O3 are reported, comparing both methodologies. Interatomic correlations allow us to conclude that the shortrange order is mainly composed by AlO4 tetrahedra, but in contrast to classical MD results, also an important number of AlO5 unit is present. The vibrational density of states presents two main bands, a low frequency one related to the inter-tetrahedron vibration and a high frequency band related to the intra-tetrahedron vibration. Finally, we present an ab initio MD calculation for the complex ternary material CdTeO3. According our calculations, the shortrange order of this compound consists of a number of basic building blocks, greater than in the case of its crystalline counterpart. The compound is characterized using pair and angular distribution functions, coordination numbers, and a description of the molecular units of the compound. For example, Cd is coordinated by either six or five atoms. In the case of Te, the chemical unit is TeO3. The most frequent clusters are CdO6, CdO5, TeO3, and TeO4.
General note
Artículo de publicación ISI
Patrocinador
This study has been supported by grant Anillo ‘‘Computer simulation lab of nano-bio systems’’ ACT-ADI 24/2006- Chile.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/119264
ISSN: 0022-2461
Quote Item
JOURNAL OF MATERIALS SCIENCE, Volume: 45, Issue: 18, Pages: 5124-5134, 2010
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account