Surface solitons in quasiperiodic nonlinear photonic lattices
Artículo
![Thumbnail](/themes/Mirage2/images/cubierta.jpg)
Open/ Download
Publication date
2012-01-04Metadata
Show full item record
Cómo citar
Martínez, Alejandro J.
Cómo citar
Surface solitons in quasiperiodic nonlinear photonic lattices
Abstract
We study discrete surface solitons in semi-infinite, one-dimensional, nonlinear (Kerr), quasiperiodic waveguide arrays of the Fibonacci and Aubry-Andre types, and explore different families of localized surface modes, as a function of optical power content ("nonlinearity") and quasiperiodic strength ("disorder"). We find a strong asymmetry in the power content of the mode as a function of the propagation constant, between the cases of focusing and defocusing nonlinearity, in both models. We also examine the dynamical evolution of a completely localized initial excitation at the array surface. We find that, in general, for a given optical power, a smaller quasiperiodic strength is required to effect localization at the surface than in the bulk. Also, for fixed quasiperiodic strength, a smaller optical power is needed to localize the excitation at the edge than inside the bulk.
General note
Artículo de publicación ISI
Patrocinador
FONDECYT
1080374
1070897
Programa de Financiamiento Basal de CONICYT
FB0824/2008
Identifier
URI: https://repositorio.uchile.cl/handle/2250/119507
DOI: DOI: 10.1103/PhysRevA.85.013807
Quote Item
PHYSICAL REVIEW A Volume: 85 Issue: 1 Article Number: 013807 Published: JAN 4 2012
Collections