About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias
  • Instituto de Ecología y Biodiversidad (IEB)
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias
  • Instituto de Ecología y Biodiversidad (IEB)
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Do carbon-based defences reduce foliar damage? Habitat-related effects on tree seedling performance in a temperate rainforest of Chiloe Island, Chile

Artículo
Thumbnail
Open/Download
IconChacon P.pdf (477.6Kb)
Publication date
2006-01
Metadata
Show full item record
Cómo citar
Chacón, Paulina
Cómo citar
Do carbon-based defences reduce foliar damage? Habitat-related effects on tree seedling performance in a temperate rainforest of Chiloe Island, Chile
.
Copiar
Cerrar

Author
  • Chacón, Paulina;
  • Armesto, Juan J.;
Abstract
Carbon-based secondary compounds (CBSCs), such as phenols or tannins, have been considered as one of the most important and general chemical barriers of woody plants against a diverse array of herbivores. Herbivory has been described as a critical factor affecting the growth and survival of newly established tree seedlings or juveniles then, the presence of secondary metabolites as defences against herbivores should be a primary strategy to reduce foliar damage. We examined whether light-induced changes in leaf phenolic chemistry affected insect herbivory on seedlings of two rainforest tree species, Drimys winteri (Winteraceae) and Gevuina avellana (Proteaceae). Seedlings of both species were planted under closed canopy and in a canopy gap within a large remnant forest patch. Half of the seedlings in each habitat were disinfected with a wide-spectrum systemic insecticide and the other half were used as controls. Seedling growth, survival, and foliar damage (estimated by an herbivory index) due to insect herbivores were monitored over a period of 16 months (December 2001-April 2003). The total leaf content of phenols and condensed tannins were assessed in seedlings from both habitats. As expected, access to light induced a greater production of CBSCs in seedlings of both tree species, but these compounds did not seem to play a significant defensive role, as seedlings grown in gaps suffered greater leaf damage than those planted in forest interior. In addition, in both habitats, seedlings without insecticide treatment suffered a greater foliar damage than those with insecticide, especially 16 months after the beginning of the experiment. Canopy openness and herbivory had positive and negative effects, respectively, on seedling growth and survival in both tree species. In conclusion, despite the higher levels of defence in tree-fall gap, the higher densities of herbivore override this and lead to higher damage levels.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/119951
ISSN: 0029-8549
Quote Item
OECOLOGIA Volume: 146 Issue: 4 Pages: 555-565 Published: JAN 2006
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account