Show simple item record

Authordc.contributor.authorBeltrán Maturana, Nicolás 
Authordc.contributor.authorDuarte Mermoud, Manuel es_CL
Authordc.contributor.authorBustos, M. A. es_CL
Authordc.contributor.authorSalah, S. A. es_CL
Authordc.contributor.authorLoyola Madariaga, Eduardo es_CL
Authordc.contributor.authorPeña Neira, Álvaro es_CL
Authordc.contributor.authorJalocha, J. W. es_CL
Admission datedc.date.accessioned2008-12-10T16:52:37Z
Available datedc.date.available2008-12-10T16:52:37Z
Publication datedc.date.issued2006-07
Cita de ítemdc.identifier.citationJOURNAL OF FOOD ENGINEERING Volume: 75 Issue: 1 Pages: 1-10 Published: JUL 2006en
Identifierdc.identifier.issn0260-8774
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/120093
Abstractdc.description.abstractIn this work, results of Chilean wine classification by means of feature extraction and Bayesian and neural network classification are presented, The classification is made based on the information contained in phenolic compound chromatograms obtained from an HPLC-DAD. The objective of this study is to classify different Cabernet Sauvignon, Merlot and Carmenere samples from different years, valleys and vineyards of Chile. Different feature extraction techniques including the discrete Fourier transform, the Wavelet transform, the class profiles and the Fisher transformation are analyzed together with several classification methods such as quadratic discriminant analysis, linear discriminant analysis, K-nearest neighbors and probabilistic neural networks. In order to compare the results, cross validation and re-sampling techniques were used.en
Lenguagedc.language.isoenen
Publisherdc.publisherELSEVIERen
Keywordsdc.subjectPRINCIPAL COMPONENT ANALYSISen
Títulodc.titleFeature extraction and classification of Chilean winesen
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record