A multispectral vision system to evaluate enzymatic browning in fresh-cut apple slices
Artículo
Open/ Download
Publication date
2011Metadata
Show full item record
Cómo citar
Lunadei, Loredana
Cómo citar
A multispectral vision system to evaluate enzymatic browning in fresh-cut apple slices
Abstract
The main objective of this study was to develop a vision system that is able to classify fresh-cut apple
slices according to the development of enzymatic browning. The experiment was carried out on ‘Granny
Smith’ apple slices stored at 7.5 ◦C for 9 days (n = 120). Twenty-four samples were analyzed per day: at
zero time and after storage for 1, 3, 7 and 9 days, which corresponds to treatments t0, t1, t3, t7 and t9
respectively. Multispectral images were acquired from the samples by employing a 3-CCD camera centered
at the infrared (IR, 800 nm), red (R, 680 nm) and blue (B, 450 nm) wavelengths. Apple slices were
evaluated visually according to a visual color scale of 1–5 (where 1 corresponds to fresh samples without
any browning and 5 to samples with severe discoloration), to obtain a sensory evaluation index (ISE) for
each sample. Finally, for each sample and for each treatment, visible (VIS) relative reflectance spectra
(360–740 nm) were obtained. In order to identify the most related wavelengths to enzymatic browning
evolution, unsupervised pattern recognition analysis of VIS reflectance spectra was performed by
principal components analysis (PCA) on the autoscaled data. Maximum loading values corresponding to
the B and R areas were observed. Therefore, a classification procedure was applied to the relative histograms
of the following monochromatic images (virtual images), which were computed pixel by pixel:
(R−B)/(R + B), R−B and B/R. In all cases, a non-supervised classification procedure was able to generate
three image-based browning reference classes (BRC): Cluster A (corresponding to the t0 samples), Cluster B
(t1 and t3 samples) and Cluster C (t7 and t9 samples). An internal and an external validation (n = 120) were
carried out, and the best classifications were obtained with the (R−B)/(R + B) and B/R image histograms
(internal validation: 99.2% of samples correctly classified for both virtual images; external validation:
84% with (R−B)/(R + B) and 81% with B/R). The camera classification was evaluated according to the colorimetric
measurements, which were usually utilized to evaluate enzymatic browning development (CIE
L*a*b* color parameters and browning index, BI) and according to ISE. For both validation phases a*, b*,
BI and ISE increased while L* values decreased with image-based class number, thereby reflecting their
browning state.
General note
Artículo de publicación ISI
Patrocinador
MULTIHORT,
funded by the Spanish Ministerio de Ciencia e Innovación (MCINN), and by the European project ISAFRUIT (FP6 FOOD
016279-2)
Identifier
URI: https://repositorio.uchile.cl/handle/2250/120183
DOI: doi:10.1016/j.postharvbio.2011.02.001
Quote Item
Postharvest Biology and Technology 60 (2011) 225–234
Collections