About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Resonance and interior layers in an inhomogeneous phase transition model

Artículo
Thumbnail
Open/Download
IconDelPino_Manuel_Resonance.pdf (727.1Kb)
Publication date
2006
Metadata
Show full item record
Cómo citar
Pino Manresa, Manuel del
Cómo citar
Resonance and interior layers in an inhomogeneous phase transition model
.
Copiar
Cerrar

Author
  • Pino Manresa, Manuel del;
  • Kowalczyk, Michal;
  • Wei, Juncheng;
Abstract
We consider the problem epsilon(2)Delta u + (u - a(x))(1 - u(2)) = 0 in Omega, partial derivative u/partial derivative v = 0 on partial derivative Omega, where Omega is a smooth and bounded domain in R-2, - 1 < a( x) < 1. Assume that G = {x is an element of Omega, a(x) = 0} is a closed, smooth curve contained in Omega in such a way that Omega = Omega(+) boolean OR Gamma boolean OR Omega- and. partial derivative a/partial derivative n > 0 on Gamma, where n is the outer normal to Omega(+). Fife and Greenlee [Russian Math. Surveys, 29 (1974), pp. 103-131] proved the existence of an interior transition layer solution u(epsilon) which approaches -1 in Omega_ and +1 in Omega(+), for all epsilon sufficiently small. A question open for many years has been whether an interior transition layer solution approaching 1 in Omega_ and -1 in Omega(+) exists. In this paper, we answer this question affirmatively when n = 2, provided that e is small and away from certain critical numbers. A main difficulty is a resonance phenomenon induced by a large number of small critical eigenvalues of the linearized operator.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/124821
ISSN: 0036-1410
Quote Item
SIAM JOURNAL ON MATHEMATICAL ANALYSIS Volume: 38 Issue: 5 Pages: 1542-1564 Published: 2006
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account