Concentration Phenomena for The Nonlocal Schodinger Equation With Dirichlet Datum
Artículo
Open/ Download
Publication date
2015Metadata
Show full item record
Cómo citar
Dávila Bonczos, Juan
Cómo citar
Concentration Phenomena for The Nonlocal Schodinger Equation With Dirichlet Datum

Abstract
For a smooth, bounded domain , s 2 .0; 1/, p 2 .1; .nC2s/=.n2s// we consider the nonlocal equation
"2s.1/su Cu D u p in
with zero Dirichlet datum and a small parameter " >0. We construct a family of solutions that concentrate
as "!0 at an interior point of the domain in the form of a scaling of the ground state in entire space.
Unlike the classical case s D 1, the leading order of the associated reduced energy functional in a
variational reduction procedure is of polynomial instead of exponential order on the distance from the
boundary, due to the nonlocal effect. Delicate analysis is needed to overcome the lack of localization, in
particular establishing the rather unexpected asymptotics for the Green function of "2s.1/s C1 in the
expanding domain "1 with zero exterior datum
General note
Artículo de publicación ISI
Patrocinador
Millennium Nucleus CAPDE
NC130017
Fondecyt
1150066
1130360
Fondo Basal CMM-Chile
EPSRC
EP/K024566/1
ERC
277749
Identifier
URI: https://repositorio.uchile.cl/handle/2250/135929
DOI: DOI: 10.2140/apde.2015.8.1165
ISSN: 1948-206X
Quote Item
Analysis & PDE Vol. 8, No. 5, 2015
Collections
The following license files are associated with this item: