About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

How predictive could alchemical derivatives be?

Artículo
Thumbnail
Open/Download
IconHow-predictive-could-alchemical-derivatives-be.pdf (46.39Kb)
Access note
Acceso a solo metadatos
Publication date
2017
Metadata
Show full item record
Cómo citar
Muñoz, Macarena
Cómo citar
How predictive could alchemical derivatives be?
.
Copiar
Cerrar

Author
  • Muñoz, Macarena;
  • Cárdenas Valencia, Carlos;
Abstract
The chemical space contains all possible compounds that can be imagined. Its size easily equals the number of fundamental particles in the observable universe. Rational design of compounds aims to find those sectors of the chemical space where compounds optimize a set of desired properties. Then, rational design demands tools to efficiently navigate the chemical space. Ab initio alchemical derivatives offer the possibility to navigate, without empiricism, the energy landscape through alchemical transformations. An alchemical transformation is any process, physical or fictitious, that connects to points in the chemical space. In this work, those transformations are constructed as a perturbative expansion of the energy with respect to perturbations in the stoichiometry. The response functions of that expansion are what is called alchemical derivatives. In this work we assess how effective alchemical derivatives are in predicting energy changes associated to changes in the composition. We do this by including in the expansion, for the first time, electrostatic, polarization and electron-transfer effects. The system we chose is one that challenges alchemical derivatives because none of these effects dominates its behavior. The transmutations studied here correspond to substitutional doping of Al-13 with up to four atoms of Si, Al13-nSin. Two types of transformations are considered, those in which the number of electrons remains constant and those in which the number of electrons also changes. It is found that contrary to what has been reported before, polarization cannot be neglected. If polarization is not included, alchemical derivatives fail to predict the change of energy and the relative energy between isomers. For isoelectronic substitution of four or more atoms, the perturbative approach collapses because the strength of the perturbation becomes too strong to guarantee convergence of the series. It is shown, however, that if only one atom is mutated at a time, alchemical derivatives rank pretty well the isomers of Al13-nSin according to their energy. In the case of non-isoelectronic transformations, it is observed that the series rapidly diverges with increasing number of electrons. In this situation, it becomes more important to keep the degree of transmutation of the parent system small.
Patrocinador
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT), 21130691 / Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT), 1140313 / Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia FB0807 CILIS - Fondo de Innovacion para la Competitividad del Ministerio de Economia, Fomento y Turismo de Chile, RC-130006
Indexation
Artículo de publicación ISI
Identifier
URI: https://repositorio.uchile.cl/handle/2250/147841
DOI: 10.1039/c7cp02755a
Quote Item
Physical Chemistry Chemical Physics Vol.19 (24): 6003-16012
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account