Show simple item record

Authordc.contributor.authorImamoglu, Özlem 
Authordc.contributor.authorMartin González, Yves Leopoldo 
Admission datedc.date.accessioned2018-12-19T20:28:29Z
Available datedc.date.available2018-12-19T20:28:29Z
Publication datedc.date.issued2003
Cita de ítemdc.identifier.citationForum Mathematicum, Volumen 15, Issue 4, 2003, Pages 565-589
Identifierdc.identifier.issn09337741
Identifierdc.identifier.other10.1515/form.2003.031
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/153509
Abstractdc.description.abstractIn this article we study a Rankin-Selberg convolution of two complex variables attached to Siegel modular forms of degree 2. We establish its basic analytic properties, find its singular curves and compute some of its residues. In particular, we show that two known Dirichlet series of Rankin-Selberg type, one introduced by Maass and another by Kohnen and Skoruppa, are obtained as residues from this series of two variables. Furthermore, we define and study a collection of Rankin-Selberg convolutions for Jacobi forms of degree 1.
Lenguagedc.language.isoen
Publisherdc.publisherWalter de Gruyter and Co.
Sourcedc.sourceForum Mathematicum
Keywordsdc.subjectMathematics (all)
Keywordsdc.subjectApplied Mathematics
Títulodc.titleOn a Rankin-Selberg convolution of two variables for Siegel modular forms
Document typedc.typeArtículo de revista
dcterms.accessRightsdcterms.accessRightsSin acceso completo
Catalogueruchile.catalogadorcrb
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record