On a Rankin-Selberg convolution of two variables for Siegel modular forms
Artículo
Open/ Download
Access note
Sin acceso completo
Publication date
2003Metadata
Show full item record
Cómo citar
Imamoglu, Özlem
Cómo citar
On a Rankin-Selberg convolution of two variables for Siegel modular forms
Abstract
In this article we study a Rankin-Selberg convolution of two complex variables attached to Siegel modular forms of degree 2. We establish its basic analytic properties, find its singular curves and compute some of its residues. In particular, we show that two known Dirichlet series of Rankin-Selberg type, one introduced by Maass and another by Kohnen and Skoruppa, are obtained as residues from this series of two variables. Furthermore, we define and study a collection of Rankin-Selberg convolutions for Jacobi forms of degree 1.
Indexation
Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/153509
DOI: 10.1515/form.2003.031
ISSN: 09337741
Quote Item
Forum Mathematicum, Volumen 15, Issue 4, 2003, Pages 565-589
Collections