Show simple item record
| Author | dc.contributor.author | Castañeda, Álvaro | |
| Author | dc.contributor.author | Guíñez, Víctor | |
| Admission date | dc.date.accessioned | 2018-12-20T14:06:21Z | |
| Available date | dc.date.available | 2018-12-20T14:06:21Z | |
| Publication date | dc.date.issued | 2013 | |
| Cita de ítem | dc.identifier.citation | Qualitative Theory of Dynamical Systems, Volumen 12, Issue 2, 2018, Pages 427-441 | |
| Identifier | dc.identifier.issn | 15755460 | |
| Identifier | dc.identifier.issn | 16623592 | |
| Identifier | dc.identifier.other | 10.1007/s12346-013-0102-8 | |
| Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/153918 | |
| Abstract | dc.description.abstract | We study the global asymptotic stability of the origin for the continuous and discrete dynamical system associated to polynomial maps in ℝn (especially when n = 3) of the form F = λ I + H, with F(0) = 0, where λ is a real number, I the identity map, and H a map with nilpotent Jacobian matrix J H. We distinguish the cases when the rows of J H are linearly dependent over ℝ and when they are linearly independent over ℝ. In the linearly dependent case we find non-linearly triangularizable vector fields F for which the origin is globally asymptotically stable singularity (respectively fixed point) for continuous (respectively discrete) systems generated by F. In the independent continuous case, we present a family of maps that have orbits escaping to infinity. Finally, in the independent discrete case, we show a large family of vector fields that have a periodic point of period 3. © 2013 The Author(s). | |
| Lenguage | dc.language.iso | en | |
| Type of license | dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
| Link to License | dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
| Source | dc.source | Qualitative Theory of Dynamical Systems | |
| Keywords | dc.subject | Global attractor | |
| Keywords | dc.subject | Markus-Yamabe conjectures | |
| Keywords | dc.subject | Polynomial vector fields | |
| Título | dc.title | Some Results About Global Asymptotic Stability | |
| Document type | dc.type | Artículo de revista | |
| dcterms.accessRights | dcterms.accessRights | Acceso Abierto | |
| Cataloguer | uchile.catalogador | SCOPUS | |
| Indexation | uchile.index | Artículo de publicación SCOPUS | |
| uchile.cosecha | uchile.cosecha | SI | |
Files in this item
- Name:
- 10.1007%2Fs12346-013-0102-8.pdf
- Size:
- 219.3Kb
- Format:
- PDF
This item appears in the following Collection(s)
Show simple item record
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile