A note on generic splitting of quadratic forms
Author
Abstract
Let F be a field of any characteristic. For n ≥ 0, let J(n) = {q̄ ∈ Wq(F)| deg(q) ≥ n}. The degree conjecture asserts that for each n ≥ 0 (DC) J(n) = InWq(F) Let p be any n-fold quadratic Pfister form over F and F(p) the function field of p. Then the function field conjecture asserts (FFC) ker [InWq(F)/In+1Wq(F) → InWq(F(p))/In+1Wq(F(p))] = {0, p̄} We prove that (DC) is equivalent to (FFC).
Indexation
Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/153976
DOI: 10.1080/00927879908826638
ISSN: 00927872
Quote Item
Communications in Algebra, Volumen 27, Issue 7, 2018, Pages 3473-3477
Collections