On representations on right nilalgebras of right nilindex four
Artículo

Open/ Download
Access note
Acceso Abierto
Publication date
2005Metadata
Show full item record
Cómo citar
Hentzel, Irvin Roy
Cómo citar
On representations on right nilalgebras of right nilindex four
Author
Abstract
We shall study representations of algebras over fields of characteristic ≠ 2, 3 of dimension 4 which satisfy the identities xy - yx = 0, and ((xx)x)x = 0. In these algebras the multiplication operator was shown to be nilpotent by [I. Correa, R. Hentzel, A. Labra, On the nilpotence of the multiplication operator in commutative right nilalgebras, Commun. Alg. 30 (7) (2002) 3473-3488]. In this paper we use this result in order to prove that there are no non-trivial one-dimensional representations, there are only reducible two-dimensional representations, and there are irreducible and reducible three-dimensional representations. © 2005 Elsevier Inc. All rights reserved.
Indexation
Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/154469
DOI: 10.1016/j.laa.2005.03.009
ISSN: 00243795
Quote Item
Linear Algebra and Its Applications, Volumen 404, Issue 1-3, 2018, Pages 389-400
Collections