Show simple item record
Author | dc.contributor.author | Behn Von Schmieden, Antonio | |
Author | dc.contributor.author | Correa, Iván | |
Author | dc.contributor.author | Hentzel, Irvin Roy | |
Admission date | dc.date.accessioned | 2018-12-20T14:11:45Z | |
Available date | dc.date.available | 2018-12-20T14:11:45Z | |
Publication date | dc.date.issued | 2008 | |
Cita de ítem | dc.identifier.citation | Communications in Algebra, Volumen 36, Issue 1, 2018, Pages 132-141 | |
Identifier | dc.identifier.issn | 00927872 | |
Identifier | dc.identifier.issn | 15324125 | |
Identifier | dc.identifier.other | 10.1080/00927870701665248 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/154630 | |
Abstract | dc.description.abstract | In this article we study nonassociative rings satisfying the polynomial identity x(yz)=y(zx), which we call "cyclic rings." We prove that every semiprime cyclic ring is associative and commutative and that every cyclic right-nilring is solvable. Moreover, we find sufficient conditions for the nilpotency of cyclic right-nilrings and apply these results to obtain sufficient conditions for the nilpotency of cyclic right-nilalgebras. Copyright © Taylor & Francis Group, LLC. | |
Lenguage | dc.language.iso | en | |
Type of license | dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
Link to License | dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
Source | dc.source | Communications in Algebra | |
Keywords | dc.subject | Algebra and Number Theory | |
Título | dc.title | Semiprimality and nilpotency of nonassociative rings satisfying x(yz)=y(zx) | |
Document type | dc.type | Artículo de revista | |
Cataloguer | uchile.catalogador | SCOPUS | |
Indexation | uchile.index | Artículo de publicación SCOPUS | |
uchile.cosecha | uchile.cosecha | SI | |
Files in this item
- Name:
- item_38649100662.pdf
- Size:
- 1.693Kb
- Format:
- PDF
This item appears in the following Collection(s)
Show simple item record
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile