Show simple item record

Authordc.contributor.authorBehn Von Schmieden, Antonio 
Authordc.contributor.authorCorrea, Iván 
Authordc.contributor.authorHentzel, Irvin Roy 
Admission datedc.date.accessioned2018-12-20T14:11:45Z
Available datedc.date.available2018-12-20T14:11:45Z
Publication datedc.date.issued2008
Cita de ítemdc.identifier.citationCommunications in Algebra, Volumen 36, Issue 1, 2018, Pages 132-141
Identifierdc.identifier.issn00927872
Identifierdc.identifier.issn15324125
Identifierdc.identifier.other10.1080/00927870701665248
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/154630
Abstractdc.description.abstractIn this article we study nonassociative rings satisfying the polynomial identity x(yz)=y(zx), which we call "cyclic rings." We prove that every semiprime cyclic ring is associative and commutative and that every cyclic right-nilring is solvable. Moreover, we find sufficient conditions for the nilpotency of cyclic right-nilrings and apply these results to obtain sufficient conditions for the nilpotency of cyclic right-nilalgebras. Copyright © Taylor & Francis Group, LLC.
Lenguagedc.language.isoen
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceCommunications in Algebra
Keywordsdc.subjectAlgebra and Number Theory
Títulodc.titleSemiprimality and nilpotency of nonassociative rings satisfying x(yz)=y(zx)
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile