Semiprimality and nilpotency of nonassociative rings satisfying x(yz)=y(zx)
Artículo
Open/ Download
Publication date
2008Metadata
Show full item record
Cómo citar
Behn Von Schmieden, Antonio
Cómo citar
Semiprimality and nilpotency of nonassociative rings satisfying x(yz)=y(zx)
Abstract
In this article we study nonassociative rings satisfying the polynomial identity x(yz)=y(zx), which we call "cyclic rings." We prove that every semiprime cyclic ring is associative and commutative and that every cyclic right-nilring is solvable. Moreover, we find sufficient conditions for the nilpotency of cyclic right-nilrings and apply these results to obtain sufficient conditions for the nilpotency of cyclic right-nilalgebras. Copyright © Taylor & Francis Group, LLC.
Indexation
Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/154630
DOI: 10.1080/00927870701665248
ISSN: 00927872
15324125
Quote Item
Communications in Algebra, Volumen 36, Issue 1, 2018, Pages 132-141
Collections