Surface solitons in chirped photonic lattices
Abstract
We study surface modes at the edge of a semi-infinite chirped photonic lattice in the framework of an effective discrete nonlinear model. We demonstrate that the lattice chirp can change dramatically the conditions for the mode localization near the surface, and we find numerically the families of discrete surface solitons in this case. Such solitons do not require any minimum power to exist provided the chirp parameter exceeds some critical value. We also analyze how the chirp modifies the interaction of a soliton with the lattice edge. © 2007 Optical Society of America.
Indexation
Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/154642
DOI: 10.1364/OL.32.002668
ISSN: 01469592
Quote Item
Optics Letters, Volumen 32, Issue 18, 2018, Pages 2668-2670
Collections