Symbolic Extensions Applied to Multiscale Structure of Genomes
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
2014Metadata
Show full item record
Cómo citar
Downarowicz, Tomasz
Cómo citar
Symbolic Extensions Applied to Multiscale Structure of Genomes
Abstract
A genome of a living organism consists of a long string of symbols over a finite alphabet carrying critical information for the organism. This includes its ability to control post natal growth, homeostasis, adaptation to changes in the surrounding environment, or to biochemically respond at the cellular level to various specific regulatory signals. In this sense, a genome represents a symbolic encoding of a highly organized system of information whose functioning may be revealed as a natural multilayer structure in terms of complexity and prominence. In this paper we use the mathematical theory of symbolic extensions as a framework to shed light onto how this multilayer organization is reflected in the symbolic coding of the genome. The distribution of data in an element of a standard symbolic extension of a dynamical system has a specific form: the symbolic sequence is divided into several subsequences (which we call layers) encoding the dynamics on various "scales". We propose that a
Indexation
Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/155104
DOI: 10.1007/s10441-014-9215-y
ISSN: 00015342
Quote Item
Acta Biotheoretica, Volumen 62, Issue 2, 2018, Pages 145-169
Collections