Show simple item record

Authordc.contributor.authorChinburg, Ted 
Authordc.contributor.authorFriedman Rafael, Eduardo 
Admission datedc.date.accessioned2018-12-20T14:15:21Z
Available datedc.date.available2018-12-20T14:15:21Z
Publication datedc.date.issued2000
Cita de ítemdc.identifier.citationJournal de Theorie des Nombres de Bordeaux, Volumen 12, Issue 2, 2018, Pages 367-377
Identifierdc.identifier.issn12467405
Identifierdc.identifier.other10.5802/jtnb.284
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/155275
Abstractdc.description.abstract© Université Bordeaux 1, 2000. tous droits réservés.Let B be a quaternion algebra over a number field k. To a pair of Hilbert symbols {a, b} and {c, d} for B we associate an invariant ρ = ρR([D(a, b)], [D(c, d)]) in a quotient of the narrow ideal class group of k. This invariant arises from the study of finite subgroups of maximal arithmetic Kleinian groups. It measures the distance between orders D(a, b) and D(c, d) in B associated to {a, b} and {c,d}. If a = c, we compute ρR([D(a, b)], [D(c, d)]) by means of arithmetic in the field k((Formula Presented)). The problem of extending this algorithm to the general case leads to studying a finite graph associated to different Hilbert symbols for B. An example arising from the determination of the smallest arithmetic hyperbolic 3-manifold is discussed.
Lenguagedc.language.isoen
Publisherdc.publisherUniversite de Bordeaux I
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceJournal de Theorie des Nombres de Bordeaux
Keywordsdc.subjectAlgebra and Number Theory
Títulodc.titleHilbert symbols, class groups and quaternion algebras
Document typedc.typeArtículo de revista
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile