Show simple item record
Author | dc.contributor.author | Chinburg, Ted | |
Author | dc.contributor.author | Friedman Rafael, Eduardo | |
Admission date | dc.date.accessioned | 2018-12-20T14:15:21Z | |
Available date | dc.date.available | 2018-12-20T14:15:21Z | |
Publication date | dc.date.issued | 2000 | |
Cita de ítem | dc.identifier.citation | Journal de Theorie des Nombres de Bordeaux, Volumen 12, Issue 2, 2018, Pages 367-377 | |
Identifier | dc.identifier.issn | 12467405 | |
Identifier | dc.identifier.other | 10.5802/jtnb.284 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/155275 | |
Abstract | dc.description.abstract | © Université Bordeaux 1, 2000. tous droits réservés.Let B be a quaternion algebra over a number field k. To a pair of Hilbert symbols {a, b} and {c, d} for B we associate an invariant ρ = ρR([D(a, b)], [D(c, d)]) in a quotient of the narrow ideal class group of k. This invariant arises from the study of finite subgroups of maximal arithmetic Kleinian groups. It measures the distance between orders D(a, b) and D(c, d) in B associated to {a, b} and {c,d}. If a = c, we compute ρR([D(a, b)], [D(c, d)]) by means of arithmetic in the field k((Formula Presented)). The problem of extending this algorithm to the general case leads to studying a finite graph associated to different Hilbert symbols for B. An example arising from the determination of the smallest arithmetic hyperbolic 3-manifold is discussed. | |
Lenguage | dc.language.iso | en | |
Publisher | dc.publisher | Universite de Bordeaux I | |
Type of license | dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
Link to License | dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
Source | dc.source | Journal de Theorie des Nombres de Bordeaux | |
Keywords | dc.subject | Algebra and Number Theory | |
Título | dc.title | Hilbert symbols, class groups and quaternion algebras | |
Document type | dc.type | Artículo de revista | |
dcterms.accessRights | dcterms.accessRights | Acceso Abierto | |
Cataloguer | uchile.catalogador | SCOPUS | |
Indexation | uchile.index | Artículo de publicación SCOPUS | |
uchile.cosecha | uchile.cosecha | SI | |
Files in this item
- Name:
- JTNB_2000__12_2_367_0.pdf
- Size:
- 1.147Mb
- Format:
- PDF
This item appears in the following Collection(s)
Show simple item record
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile