Hilbert symbols, class groups and quaternion algebras
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
2000
Author
Abstract
© Université Bordeaux 1, 2000. tous droits réservés.Let B be a quaternion algebra over a number field k. To a pair of Hilbert symbols {a, b} and {c, d} for B we associate an invariant ρ = ρR([D(a, b)], [D(c, d)]) in a quotient of the narrow ideal class group of k. This invariant arises from the study of finite subgroups of maximal arithmetic Kleinian groups. It measures the distance between orders D(a, b) and D(c, d) in B associated to {a, b} and {c,d}. If a = c, we compute ρR([D(a, b)], [D(c, d)]) by means of arithmetic in the field k((Formula Presented)). The problem of extending this algorithm to the general case leads to studying a finite graph associated to different Hilbert symbols for B. An example arising from the determination of the smallest arithmetic hyperbolic 3-manifold is discussed.
Indexation
Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/155275
DOI: 10.5802/jtnb.284
ISSN: 12467405
Quote Item
Journal de Theorie des Nombres de Bordeaux, Volumen 12, Issue 2, 2018, Pages 367-377
Collections