Show simple item record
| Author | dc.contributor.author | Aravire, R. | |
| Author | dc.contributor.author | Baeza, R. | |
| Admission date | dc.date.accessioned | 2018-12-20T14:26:52Z | |
| Available date | dc.date.available | 2018-12-20T14:26:52Z | |
| Publication date | dc.date.issued | 2003 | |
| Cita de ítem | dc.identifier.citation | Journal of Algebra, Volumen 259, Issue 2, 2018, Pages 361-414 | |
| Identifier | dc.identifier.issn | 00218693 | |
| Identifier | dc.identifier.other | 10.1016/S0021-8693(02)00568-9 | |
| Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/156037 | |
| Abstract | dc.description.abstract | Let F be a field of characteristic 2. Let ΩFn be the F-space of absolute differential forms over F. There is a homomorphism ℘: ΩFn → ΩFn/dΩFn-1 given by ℘ (x dx1/x1 ∧ ⋯ ∧ dxn/xn) = (x2-x)dx1/x1 ∧ ⋯ ∧ dxn/xn mod dΩFn-1. Let Hn+1 (F) = Coker (℘). We study the behavior of Hn+1 (F) under the function field F(Φ)/F, where Φ = «b1,..., bn» is an n-fold Pfister form and F(Φ) is the function field of the quadric Φ = 0 over F. We show that ker(Hn+1(F) → Hn+1 (F(Φ))) = F · db1/b1 ∧ ⋯ ∧ dbn/bn. Using Kato's isomorphism of Hn+1 (F) with the quotient InW(inf)q((/inf)F)/In+1W(inf)q(/inf)(F), where W(inf)q(/inf)(F) is the Witt group of quadratic forms over F and I ⊂ W(F) is the maximal ideal of even-dimensional bilinear forms over F, we deduce from the above result the analogue in characteristic 2 of Knebusch's degree conjecture, i.e. InW(inf)q(/inf) (F) is the set of all classes q̄ with deg (q) ≥ n. © 2003 Elsevier Science (USA). All rights reserved. | |
| Lenguage | dc.language.iso | en | |
| Type of license | dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
| Link to License | dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
| Source | dc.source | Journal of Algebra | |
| Keywords | dc.subject | Bilinear forms | |
| Keywords | dc.subject | Degree of quadratic forms | |
| Keywords | dc.subject | Differential forms | |
| Keywords | dc.subject | Function fields | |
| Keywords | dc.subject | Generic splitting fields of quadratic forms | |
| Keywords | dc.subject | Quadratic forms | |
| Keywords | dc.subject | Witt-groups | |
| Título | dc.title | The behavior of quadratic and differential forms under function field extensions in characteristic two | |
| Document type | dc.type | Artículo de revista | |
| dcterms.accessRights | dcterms.accessRights | Acceso Abierto | |
| Cataloguer | uchile.catalogador | SCOPUS | |
| Indexation | uchile.index | Artículo de publicación SCOPUS | |
| uchile.cosecha | uchile.cosecha | SI | |
Files in this item
- Name:
- s0021-8693(02)00568-9.pdf
- Size:
- 12.90Kb
- Format:
- PDF
This item appears in the following Collection(s)
Show simple item record
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile