Show simple item record

Authordc.contributor.authorAravire, R. 
Authordc.contributor.authorBaeza, R. 
Admission datedc.date.accessioned2018-12-20T14:26:52Z
Available datedc.date.available2018-12-20T14:26:52Z
Publication datedc.date.issued2003
Cita de ítemdc.identifier.citationJournal of Algebra, Volumen 259, Issue 2, 2018, Pages 361-414
Identifierdc.identifier.issn00218693
Identifierdc.identifier.other10.1016/S0021-8693(02)00568-9
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/156037
Abstractdc.description.abstractLet F be a field of characteristic 2. Let ΩFn be the F-space of absolute differential forms over F. There is a homomorphism ℘: ΩFn → ΩFn/dΩFn-1 given by ℘ (x dx1/x1 ∧ ⋯ ∧ dxn/xn) = (x2-x)dx1/x1 ∧ ⋯ ∧ dxn/xn mod dΩFn-1. Let Hn+1 (F) = Coker (℘). We study the behavior of Hn+1 (F) under the function field F(Φ)/F, where Φ = «b1,..., bn» is an n-fold Pfister form and F(Φ) is the function field of the quadric Φ = 0 over F. We show that ker(Hn+1(F) → Hn+1 (F(Φ))) = F · db1/b1 ∧ ⋯ ∧ dbn/bn. Using Kato's isomorphism of Hn+1 (F) with the quotient InW(inf)q((/inf)F)/In+1W(inf)q(/inf)(F), where W(inf)q(/inf)(F) is the Witt group of quadratic forms over F and I ⊂ W(F) is the maximal ideal of even-dimensional bilinear forms over F, we deduce from the above result the analogue in characteristic 2 of Knebusch's degree conjecture, i.e. InW(inf)q(/inf) (F) is the set of all classes q̄ with deg (q) ≥ n. © 2003 Elsevier Science (USA). All rights reserved.
Lenguagedc.language.isoen
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceJournal of Algebra
Keywordsdc.subjectBilinear forms
Keywordsdc.subjectDegree of quadratic forms
Keywordsdc.subjectDifferential forms
Keywordsdc.subjectFunction fields
Keywordsdc.subjectGeneric splitting fields of quadratic forms
Keywordsdc.subjectQuadratic forms
Keywordsdc.subjectWitt-groups
Títulodc.titleThe behavior of quadratic and differential forms under function field extensions in characteristic two
Document typedc.typeArtículo de revista
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile