The behavior of quadratic and differential forms under function field extensions in characteristic two
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
2003Metadata
Show full item record
Cómo citar
Aravire, R.
Cómo citar
The behavior of quadratic and differential forms under function field extensions in characteristic two
Author
Abstract
Let F be a field of characteristic 2. Let ΩFn be the F-space of absolute differential forms over F. There is a homomorphism ℘: ΩFn → ΩFn/dΩFn-1 given by ℘ (x dx1/x1 ∧ ⋯ ∧ dxn/xn) = (x2-x)dx1/x1 ∧ ⋯ ∧ dxn/xn mod dΩFn-1. Let Hn+1 (F) = Coker (℘). We study the behavior of Hn+1 (F) under the function field F(Φ)/F, where Φ = «b1,..., bn» is an n-fold Pfister form and F(Φ) is the function field of the quadric Φ = 0 over F. We show that ker(Hn+1(F) → Hn+1 (F(Φ))) = F · db1/b1 ∧ ⋯ ∧ dbn/bn. Using Kato's isomorphism of Hn+1 (F) with the quotient InW(inf)q((/inf)F)/In+1W(inf)q(/inf)(F), where W(inf)q(/inf)(F) is the Witt group of quadratic forms over F and I ⊂ W(F) is the maximal ideal of even-dimensional bilinear forms over F, we deduce from the above result the analogue in characteristic 2 of Knebusch's degree conjecture, i.e. InW(inf)q(/inf) (F) is the set of all classes q̄ with deg (q) ≥ n. © 2003 Elsevier Science (USA). All rights reserved.
Indexation
Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/156037
DOI: 10.1016/S0021-8693(02)00568-9
ISSN: 00218693
Quote Item
Journal of Algebra, Volumen 259, Issue 2, 2018, Pages 361-414
Collections