Show simple item record

Authordc.contributor.authorNaulin, Raúl 
Authordc.contributor.authorPinto Jiménez, Manuel 
Admission datedc.date.accessioned2018-12-20T14:32:19Z
Available datedc.date.available2018-12-20T14:32:19Z
Publication datedc.date.issued1997
Cita de ítemdc.identifier.citationJournal of Mathematical Analysis and Applications, Volumen 208, Issue 2, 2018, Pages 281-297
Identifierdc.identifier.issn0022247X
Identifierdc.identifier.other10.1006/jmaa.1997.5260
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/156342
Abstractdc.description.abstractThis work is concerned with the quasi-diagonalization of the impulsive linear systemx′=A(t)x,x(t+k)=Bkx(t-k), where the functionA(t) is bounded and piecewise uniformly continuous, and (Bk)∞k=1is a bounded sequence of impulse matrices. Let Λ(t) andDkbe the diagonal matrices of eigenvalues ofA(t) andBk. We prove that there exists a transformationx=T(t)ywhich reduces this impulsive system toy′=[Λ(t)+F(t)+Δ(t,σ)+R(t)]y,y(tk)=[Dk+Δk]y(t-k), whereF(t), Δ(t,σ), and (Δk)∞k=1are functions with small norms inL1,L∞, andl∞, respectively, andR(t)=-T-1(t)T′(t). An estimate for ∫tsR(u)duis given. We apply these results to the problem of the existence of periodic solutions of impulsive systems and to the problem of stability of the singularly perturbed linear impulsive system εx′=A(t)x,x(t+k)=Bkx(t-k). © 1997 Academic Press.
Lenguagedc.language.isoen
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceJournal of Mathematical Analysis and Applications
Keywordsdc.subjectAnalysis
Keywordsdc.subjectApplied Mathematics
Títulodc.titleQuasi-diagonalization of linear impulsive systems and applications
Document typedc.typeArtículo de revista
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile