Quasi-diagonalization of linear impulsive systems and applications
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
1997Metadata
Show full item record
Cómo citar
Naulin, Raúl
Cómo citar
Quasi-diagonalization of linear impulsive systems and applications
Author
Abstract
This work is concerned with the quasi-diagonalization of the impulsive linear systemx′=A(t)x,x(t+k)=Bkx(t-k), where the functionA(t) is bounded and piecewise uniformly continuous, and (Bk)∞k=1is a bounded sequence of impulse matrices. Let Λ(t) andDkbe the diagonal matrices of eigenvalues ofA(t) andBk. We prove that there exists a transformationx=T(t)ywhich reduces this impulsive system toy′=[Λ(t)+F(t)+Δ(t,σ)+R(t)]y,y(tk)=[Dk+Δk]y(t-k), whereF(t), Δ(t,σ), and (Δk)∞k=1are functions with small norms inL1,L∞, andl∞, respectively, andR(t)=-T-1(t)T′(t). An estimate for ∫tsR(u)duis given. We apply these results to the problem of the existence of periodic solutions of impulsive systems and to the problem of stability of the singularly perturbed linear impulsive system εx′=A(t)x,x(t+k)=Bkx(t-k). © 1997 Academic Press.
Indexation
Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/156342
DOI: 10.1006/jmaa.1997.5260
ISSN: 0022247X
Quote Item
Journal of Mathematical Analysis and Applications, Volumen 208, Issue 2, 2018, Pages 281-297
Collections