Show simple item record

Authordc.contributor.authorLabra, Alicia 
Authordc.contributor.authorReyes, Cristián 
Admission datedc.date.accessioned2018-12-20T14:39:13Z
Available datedc.date.available2018-12-20T14:39:13Z
Publication datedc.date.issued2005
Cita de ítemdc.identifier.citationLinear Algebra and Its Applications, Volumen 400, Issue 1-3, 2018, Pages 91-97
Identifierdc.identifier.issn00243795
Identifierdc.identifier.other10.1016/j.laa.2004.11.014
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/156842
Abstractdc.description.abstractWe give a characterization of the representations on train algebras of rank 3. We prove that the subalgebra of the algebra of endomorphisms of a module generated by the representation of the nil ideal of the algebra is nilpotent. Finally we prove that every irreducible module has dimension one over the field under consideration. © 2004 Elsevier Inc. All rights reserved.
Lenguagedc.language.isoen
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceLinear Algebra and Its Applications
Keywordsdc.subjectIrreducible modules
Keywordsdc.subjectNilpotent
Keywordsdc.subjectPeirce decomposition
Keywordsdc.subjectRepresentation
Keywordsdc.subjectTrain algebra
Títulodc.titleRepresentations on train algebras of rank 3
Document typedc.typeArtículo de revista
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile