Representations on train algebras of rank 3
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
2005
Author
Abstract
We give a characterization of the representations on train algebras of rank 3. We prove that the subalgebra of the algebra of endomorphisms of a module generated by the representation of the nil ideal of the algebra is nilpotent. Finally we prove that every irreducible module has dimension one over the field under consideration. © 2004 Elsevier Inc. All rights reserved.
Indexation
Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/156842
DOI: 10.1016/j.laa.2004.11.014
ISSN: 00243795
Quote Item
Linear Algebra and Its Applications, Volumen 400, Issue 1-3, 2018, Pages 91-97
Collections