Self-compensation in phosphorus-doped CdTe
Artículo
Open/ Download
Access note
Acceso abierto
Publication date
2017
Abstract
We investigate the self-compensation mechanism in phosphorus-doped CdTe. The formation energies, charge transition levels, and defect states of several P-related point defects susceptible to cause self-compensation are addressed by first-principles calculations. Moreover, we assess the influence of the spin-orbit coupling and supercell-size effects on the stability of AX centers, which are believed to be responsible for most of the self-compensation. We report an improved result for the lowest-energy configuration of the P interstitial (Pi) and find that the self-compensation mechanism is not due to the formation of AX centers. Under Te-rich growth conditions, (Pi) exhibits a formation energy lower than the substitutional acceptor (PTe) when the Fermi level is near the valence band, acting as compensating donor, while, for Cd-rich growth conditions, our results suggest that p-type doping is limited by the formation of (PTe-VTe) complexes.
Patrocinador
Fondo Nacional de Investigaciones Cientificas y Tecnologicas (FONDECYT, Chile) 1170480 1171807 supercomputing infrastructure of the NLHPC ECM-02
Indexation
Artículo de publicación SCOPUS Artículo de publicación WoS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/169140
DOI: 10.1103/PhysRevB.96.134115
ISSN: 24699969
24699950
Quote Item
Physical Review B 96, 134115 (2017)
Collections