Le principe de Hasse pour les espaces homogènes: Réduction au cas des stabilisateurs finis
Artículo
![Thumbnail](/themes/Mirage2/images/cubierta.jpg)
Open/ Download
Publication date
2019Metadata
Show full item record
Cómo citar
Demarche, Cyril
Cómo citar
Le principe de Hasse pour les espaces homogènes: Réduction au cas des stabilisateurs finis
Abstract
For a large family of properties of homogeneous spaces, we prove that such a property holds for all homogeneous spaces of connected linear algebraic groups as soon as it holds for homogeneous spaces of SLn with finite stabilisers. As an example, we reduce to this particular case an important conjecture by Colliot-Thélène about the Brauer-Manin obstruction to the Hasse principle and to weak approximation. A recent work by Harpaz and Wittenberg proves that the main result also applies to the analogous conjecture (known as conjecture (E)) for zero-cycles on homogeneous spaces.
Indexation
Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/171891
DOI: 10.1112/S0010437X19007395
ISSN: 0010437X
Quote Item
Compositio Mathematica, Volumen 155, Issue 8, 2019, Pages 1568-1593
Collections