Show simple item record

Authordc.contributor.authorMartínez Ledesma, Miguel 
Authordc.contributor.authorDíaz Quezada, Marcos Andrés 
Admission datedc.date.accessioned2019-10-22T03:11:20Z
Available datedc.date.available2019-10-22T03:11:20Z
Publication datedc.date.issued2019
Cita de ítemdc.identifier.citationJournal of Geophysical Research: Space Physics, Volumen 124, Issue 4, 2019, Pages 2897-2919
Identifierdc.identifier.issn21699402
Identifierdc.identifier.issn21699380
Identifierdc.identifier.other10.1029/2018JA026217
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/171917
Abstractdc.description.abstractUnambiguously estimating the plasma parameters of the ionosphere at altitudes between 130 and 300 km presents a problem for the incoherent scatter radar (ISR). At these ranges, ISR is unable to distinguish between different mixtures of molecular ions (NO + and O 2 + ) and atomic oxygen ions (O + ). Common solutions to this problem are either to employ empirical or theoretical models of the ionosphere or to add a priori known plasma parameter information obtained from the plasma line of the ISR spectrum. Studies have demonstrated that plasma parameters can be unambiguously estimated in almost noiseless scenarios, not commonly feasible during routine monitoring. In this study, we define a theoretical framework to quantify the ambiguity problem and determine the maximum signal fluctuation levels of the ISR signal to unambiguously estimate plasma parameters. We conduct Monte Carlo simulations for different plasma parameters to evaluate the estimation performance of the most commonly used nonlinear least squares optimization algorithm. Results are shown as probability curves of valid convergence and correct estimation. We use simulations to quantify the estimation error when using ionospheric models as initial conditions of the optimization algorithm. We also determine the contribution to the estimation process of different combinations of parameters known from the plasma line, the particular contribution of each plasma parameter, and the effect of increasing the level of uncertainty of the parameters known a priori. Results suggest that knowing a priori both electron density and electron temperature parameters allows an unambiguous estimation even at high fluctuation levels.
Lenguagedc.language.isoen
Publisherdc.publisherBlackwell
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceJournal of Geophysical Research: Space Physics
Keywordsdc.subjectIncoherent scatter radar data analysis
Keywordsdc.subjectMonte Carlo study
Keywordsdc.subjectPlasma line spectrum information
Keywordsdc.subjectProbability of correct estimation
Keywordsdc.subjectSignal fluctuation simulation
Keywordsdc.subjectTemperature-ion composition ambiguity problem
Títulodc.titleDetermination of the Signal Fluctuation Threshold of the Temperature-Ion Composition Ambiguity Problem Using Monte Carlo Simulations
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorlaj
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile