Green's function and infinite-time bubbling in the critical nonlinear heat equation
Artículo

Open/ Download
Access note
Acceso Abierto
Publication date
2020Metadata
Show full item record
Cómo citar
Cortázar, Carmen
Cómo citar
Green's function and infinite-time bubbling in the critical nonlinear heat equation
Abstract
Let Omega be a smooth bounded domain in R-n, n >= 5. We consider the classical semilinear heat equation at the critical Sobolev exponent.
ut =Delta u + un+2/n-2 in Omega x (0, infinity), u = 0 on partial derivative Omega x (0, infinity).
Let G (x, y) be the Dirichlet Green function of 1 in similar to Delta in Omega and H(x, y) its regular part. Let q(j) is an element of Omega, j = 1,,,,, k, be points such that the matrix
[h(q1, q2) -G(q1, q2) ... -G(q1, q2) -G(q1, q2) H(q1, q2) -G(q1, q2) -G(q1, q2)
-G(q1, qk) ... -G(q(k-1), qk) J(qk, qk)
is positive definite. For any k >= 1 such points indeed exist. We prove the existence of a positive smooth solution u.x; t/ which blows up by bubbling in infinite time near those points. More precisely, for large time t, u takes the approximate form.
u(x, t) approximate to Sigma(alpha n)(j=1)(mu(j)(t)/mu(j)(t)(2) + vertical bar x -xi(j) (t)vertical bar(2))((n-2)/2.).
Here xi(j).(t) -> q(j) and 0 < mu j(t) -> 0 as t -> infinity. We find that mu(j) (t)/ similar to t(-1/(n-4)) as t -> infinity when, n >= 5.
Patrocinador
omision Nacional de Investigacion Cientifica y Tecnologica (CONICYT), CONICYT FONDECYT:1190102
UK Royal Society Research Professorship
PAI, Chile: AFB-170001
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT), CONICYT FONDECYT: 1160135
Indexation
Artículo de publicación ISI Artículo de publicación SCOPUS
Quote Item
Journal of the European Mathematical Society 22(1): 283-344 (2020)
Collections
The following license files are associated with this item: