Interface analysis of Ag/n-type Si contacts in n-type PERT solar cells.
Artículo
Access note
Acceso a solo metadatos
Publication date
2020Metadata
Show full item record
Cómo citar
Ferrada, Pablo
Cómo citar
Interface analysis of Ag/n-type Si contacts in n-type PERT solar cells.
Author
Abstract
To increase efficiencies of bifacial solar cells, emitter, back surface field (BSF), and metal patterns must be optimized. We study the influence of paste volume, through multiple prints, of two silver pastes on the contact formation at the rear side of n-type passivated emitter and rear totally diffused (n-PERT) solar cells with two BSF doping profiles. Differences in fingers' electrical properties were found between pastes. Contact resistivity shows a relative difference of 27.6%, partially explained by changes in the silver crystallites formation at the Ag/Si interface and in the crystallites' penetration depth. Variations in crystallites formation and penetration between pastes can reach 38.4% and 48.8%, respectively. Line resistance shows a difference between pastes, appearing as the main cause of an absolute efficiency difference of 2.9%. Fingers' structural and electrical properties are modified by increasing the paste volume. Microstructure analysis reveals that additional metallic printing does not only increase line cross sectional area but also increases the formation of silver crystallites, which can reach a relative increment of 23.9% between first and second prints. Further printing does not necessarily decrease contact resistivity, but reduces line resistance in up to 94.9%, which results in an absolute efficiency increase of 2.2%. In addition, the higher presence of silver oxide in the finger is related to a higher efficiency in the formation of silver crystallites. Finally, BSF doping has an influence in the open circuit voltage, short circuit current density, and contact resistivity, with differences that can reach 8.7 mV, 0.2 mA/cm(2), and 6.1 m omega cm(2), respectively, depending on paste and number of prints.
Patrocinador
Bundesministerium fur Wirtschaft und Energie (BMWi)
FKZ 0324206
European Solar-Era-Net
038
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT-FONDAP program)
15110019
15130011
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
CONICYT FONDECYT
11160664
11190239
11190289
Fondo de Equipamiento Cientifico y Tecnologico (FONDEQUIP)
EQM170111
Corporacion de Fomento de la Produccion (CORFO)
17PTECES-75830
Ministerio de Educacion de Chile (MINEDUC)
UA ANT 1755
USM
Pi-L-18-21
Millennium Nucleus MULTIMAT-ICM/MINECON
Indexation
Artículo de publicación ISI Artículo de publicación SCOPUS
Quote Item
Progress in Photovoltaics Volumen: 28 Número: 5 Páginas: 358-371 May 2020
Collections