Theta divisors whose Gauss map has a fiber of positive dimension
Author
dc.contributor.author
Auffarth, Robert
Author
dc.contributor.author
Codogni, Giulio
Admission date
dc.date.accessioned
2020-05-08T22:13:43Z
Available date
dc.date.available
2020-05-08T22:13:43Z
Publication date
dc.date.issued
2020
Cita de ítem
dc.identifier.citation
Journal of Algebra 548 (2020) 153–161
es_ES
Identifier
dc.identifier.other
10.1016/j.jalgebra.2019.11.042
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/174612
Abstract
dc.description.abstract
We construct families of principally polarized abelian varieties whose theta divisor is irreducible and contains an abelian subvariety. These families are used to construct examples when the Gauss map of the theta divisor is only generically finite and not finite. That is, the Gauss map in these cases has at least one positive-dimensional fiber. We also obtain lower-bounds on the dimension of Andreotti-Mayer loci.
es_ES
Patrocinador
dc.description.sponsorship
CONICYT PIA ACT1415
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
CONICYT FONDECYT
11180965