About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

High copper concentration reduces biofilm formation in Acidithiobacillus ferrooxidans by decreasing production of extracellular polymeric substances and its adherence to elemental sulfur

Artículo
Thumbnail
Open/Download
IconHigh-copper-concentration.pdf (231.1Kb)
Access note
Acceso a solo metadatos
Publication date
2020
Metadata
Show full item record
Cómo citar
Vargas Straube, María José
Cómo citar
High copper concentration reduces biofilm formation in Acidithiobacillus ferrooxidans by decreasing production of extracellular polymeric substances and its adherence to elemental sulfur
.
Copiar
Cerrar

Author
  • Vargas Straube, María José;
  • Beard Bórquez, Simón;
  • Norambuena, Rodrigo;
  • Paradela, Alberto;
  • Vera, Mario;
  • Jerez, Carlos A.;
Abstract
Acidithiobacillus ferrooxidans is an acidophilic bacterium able to grow in environments with high concentrations of metals. It is a chemolithoautotroph able to form biofilms on the surface of solid minerals to obtain its energy. The response of both planktonic and sessile cells of A. ferrooxidans ATCC 23270 grown in elemental sulfur and adapted to high copper concentration was analyzed by quantitative proteomics. It was found that 137 proteins varied their abundance when comparing both lifestyles. Copper effllux proteins, some subunits of the ATP synthase complex, porins, and proteins involved in cell wall modification increased their abundance in copper-adapted sessile lifestyle cells. On the other hand, planktonic copper-adapted cells showed increased levels of proteins such as: cupreredoxins involved in copper cell sequestration, some proteins related to sulfur metabolism, those involved in biosynthesis and transport of lipopolysaccharides, and in assembly of type IV pili. During copper adaptation a decreased formation of biofilms was measured as determined by epifluorescence microscopy. This was apparently due not only to a diminished number of sessile cells but also to their exopoly-saccharides production. This is the first study showing that copper, a prevalent metal in biomining environments causes dispersion of A. ferrooxidans biofilms. Significance: Copper is a metal frequently found in high concentrations at mining environments inhabitated by acidophilic microorganisms. Copper resistance determinants of A. ferrooxidans have been previously studied in planktonic cells. Although biofilms are recurrent in these types of environments, the effect of copper on their formation has not been studied so far. The results obtained indicate that high concentrations of copper reduce the capacity of A. ferrooxidans ATCC 23270 to form biofilms on sulfur. These findings may be relevant to consider for a bacterium widely used in copper bioleaching processes.
Patrocinador
FONDECYT Chile, (Science and Technology Chilean Fund) 1150791 FIS grant PT13/0001
Indexation
Artículo de publicación ISI
 
Artículo de publicación SCOPUS
 
Identifier
URI: https://repositorio.uchile.cl/handle/2250/176905
DOI: 10.1016/j.jprot.2020.103874
Quote Item
Journal of Proteomics 225:103874 (2020)
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account