Discrete embedded modes in the continuum in 2D lattices
Artículo
Access note
Acceso Abierto
Publication date
2020Metadata
Show full item record
Cómo citar
Molina Gálvez, Mario
Cómo citar
Discrete embedded modes in the continuum in 2D lattices
Author
Abstract
We study the problem of constructing bulk and surface embedded modes (EMs) inside the quasi-continuum band of a square lattice, using a potential engineering approach a la Wigner and von Neumann. Building on previous results for the one-dimensional (1D) lattice, and making use of separability, we produce examples of two-dimensional envelope functions and the two-dimensional (2D) potentials that produce them. The 2D embedded mode decays like a stretched exponential, with a supporting potential that decays as a power law. The separability process can cause that a 1D impurity state (outside the 1D band) can give rise to a 2D embedded mode (inside the band). The embedded mode survives the addition of random perturbations of the potential; however, this process introduces other localized modes inside the band, and causes a general tendency towards localization of the perturbed modes.
Indexation
Artículo de publicación ISI Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/177580
DOI: 10.1016/j.physleta.2020.126704
Quote Item
Physics Letters A Volumen: 384 Número: 27 Número de artículo: 126704 Fecha de publicación: Sep 28 2020
Collections
The following license files are associated with this item: