A model for defect formation in materials exposed to radiation
Artículo
Access note
Acceso abierto
Publication date
2021Metadata
Show full item record
Cómo citar
Davis, Sergio
Cómo citar
A model for defect formation in materials exposed to radiation
Author
Abstract
A simple model for the stochastic evolution of defects in a material under irradiation is presented. Using the master-equation formalism, we derive an expression for the average number of defects in terms of the power flux and the exposure time. The model reproduces the qualitative behavior of self-healing due to defect recombination, reaching a steady-state concentration of defects that depends on the power flux of the incident radiation and the material temperature, while also suggesting a particular time scale on which the incident energy is most efficient for producing defects, in good agreement with experimental results. Given this model, we discuss the integral damage factor, a descriptor that combines the power flux and the square of the irradiation time. In recent years, the scientific community involved in plasma-facing materials for nuclear fusion reactors has used this parameter to measure the equivalent material damage produced in experiments of various types with different types of radiation and wide ranges of power flux and irradiation time. The integral damage factor is useful in practice but lacks formal theoretical justification. In this simple model, we find that it is directly proportional to the maximum concentration of defects.
Patrocinador
ANID PIA ACT172101
ANID FONDECYT 1171127
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) ACE-01
CRP IAEA Contract 20370
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) 74160058
ANPCyT-PICT2697
Indexation
Artículo de publícación WoS Artículo de publicación SCOPUS
Quote Item
Matter Radiat. Extremes 6, 015902 (2021)
Collections
The following license files are associated with this item: