Stability estimate for the semi-discrete linearized Benjamin-Bona-Mahony equation
Author
dc.contributor.author
Lecaros, Rodrigo
Author
dc.contributor.author
Ortega Palma, Jaime Humberto
Author
dc.contributor.author
Pérez, Ariel
Admission date
dc.date.accessioned
2021-12-21T20:27:36Z
Available date
dc.date.available
2021-12-21T20:27:36Z
Publication date
dc.date.issued
2021
Cita de ítem
dc.identifier.citation
Esaim: COCV 27 (2021) 93
es_ES
Identifier
dc.identifier.other
10.1051/cocv/2021087
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/183336
Abstract
dc.description.abstract
In this work we study the semi-discrete linearized Benjamin-Bona-Mahony equation (BBM) which is a model for propagation of one-dimensional, unidirectional, small amplitude long waves in non-linear dispersive media. In particular, we derive a stability estimate which yields a unique continuation property. The proof is based on a Carleman estimate for a finite difference approximation of Laplace operator with boundary observation in which the large parameter is connected to the mesh size.
es_ES
Lenguage
dc.language.iso
en
es_ES
Publisher
dc.publisher
EDP Sciences
es_ES
Type of license
dc.rights
Attribution-NonCommercial-NoDerivs 3.0 United States
This Note investigates the boundary controllability, as well as the internal controllability, of the complex Ginzburg–Landau
equation. Null-controllability results are derived from a Carleman estimate and an analysis based ...
Esta tesis esta dividida en seis partes.
La primera parte está dedicada a probar propiedades de Hadamard y teoremas del tipo de Liouville para soluciones viscosas de ecuaciones diferenciales parciales elípticas completamente ...