Stability estimate for the semi-discrete linearized Benjamin-Bona-Mahony equation
Artículo

Open/ Download
Access note
Acceso abierto
Publication date
2021Metadata
Show full item record
Cómo citar
Lecaros, Rodrigo
Cómo citar
Stability estimate for the semi-discrete linearized Benjamin-Bona-Mahony equation
Abstract
In this work we study the semi-discrete linearized Benjamin-Bona-Mahony equation (BBM) which is a model for propagation of one-dimensional, unidirectional, small amplitude long waves in non-linear dispersive media. In particular, we derive a stability estimate which yields a unique continuation property. The proof is based on a Carleman estimate for a finite difference approximation of Laplace operator with boundary observation in which the large parameter is connected to the mesh size.
Indexation
Artículo de publícación WoS
Quote Item
Esaim: COCV 27 (2021) 93
Collections
The following license files are associated with this item:
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States
Related items
Showing items related by title, author, creator and subject.
-
Acevedo, Paul; Amrouche, Chérif; Conca, Carlos; Ghosh, Amrita (Elsevier Masson SAS, 2019)© 2018 Académie des sciences In this paper, we study the stationary Stokes and Navier–Stokes equations with non-homogeneous Navier boundary condition in a bounded domain Ω⊂R 3 of class C 1,1 from the viewpoint of the ...
-
Chen, Huyuan (Universidad de Chile, 2014)Esta tesis esta dividida en seis partes. La primera parte está dedicada a probar propiedades de Hadamard y teoremas del tipo de Liouville para soluciones viscosas de ecuaciones diferenciales parciales elípticas completamente ...
-
Rosier, Lionel; Bing-Yu Zhang (Elsevier B.V., 2008-02)This Note investigates the boundary controllability, as well as the internal controllability, of the complex Ginzburg–Landau equation. Null-controllability results are derived from a Carleman estimate and an analysis based ...