Local-global principles for homogeneous spaces over some two-dimensional geometric global fields
Author
dc.contributor.author
Izquierdo, Diego
Author
dc.contributor.author
Lucchini Arteche, Giancarlo Antonio
Admission date
dc.date.accessioned
2022-04-21T00:10:29Z
Available date
dc.date.available
2022-04-21T00:10:29Z
Publication date
dc.date.issued
2021
Cita de ítem
dc.identifier.citation
Journal Fur Die Reine und Angewandte Mathematik Volume 781 Page 165-186 Dec 2021
es_ES
Identifier
dc.identifier.other
10.1515/crelle-2021-0053
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/185032
Abstract
dc.description.abstract
In this article, we study the obstructions to the local-global principle for homogeneous spaces with connected or abelian stabilizers over finite extensions of the field C ((x; y)) of Laurent series in two variables over the complex numbers and over function fields of curves over C ((t)). We give examples that prove that the Brauer-Manin obstruction with respect to the whole Brauer group is not enough to explain the failure of the local-global principle, and we then construct a variant of this obstruction using torsors under quasi-trivial tori which turns out to work. In the end of the article, we compare this new obstruction to the descent obstruction with respect to torsors under tori. For that purpose, we use a result on towers of torsors, that is of independent interest and therefore is proved in a separate appendix.
es_ES
Patrocinador
dc.description.sponsorship
ANID via FONDECYT 1210010
PAI 79170034
es_ES
Lenguage
dc.language.iso
en
es_ES
Publisher
dc.publisher
Walter de Gruyter GMBH
es_ES
Type of license
dc.rights
Attribution-NonCommercial-NoDerivs 3.0 United States