Construcción de modelos de Gelfand grupoideales vía la máquina de Mackey para productos semidirectos de grupos finitos
Tesis

Open/ Download
Access note
Acceso abierto
Publication date
2017Metadata
Show full item record
Cómo citar
Soto Andrade, Jorge
Cómo citar
Construcción de modelos de Gelfand grupoideales vía la máquina de Mackey para productos semidirectos de grupos finitos
Author
Professor Advisor
Abstract
A. groupoid is the natural generalization of a group, considered as a
category: it is a category where each morphism is invertible. In the present thesis we will use characters of the movements groupoid M(G, X),
groupoid associated to the geometric pair (X, G) (G finite group), being
able to construct a Gelfand model for G. The characters of M(G, X)
allow to twist the natural representation of G, which supplies a Gelfand model for the G group. In particular, we present and prove that
certain spaces X are from Gelfand (spaces whose twisted natural representation is a Gelfand model), this for certain classical groups, namely,
Dihedral groups and rigid transformations groups associated with finites extensions onon finite fields. In order to give a general answer to
the cardinal of such spaces of Gelfand, furthermore, to be able to present at least one candidate to be a Gelfand space for a certain group
G= Ax H backed up by the Mackey machine and the construct that
it makes regarding to the irreducible representations for G.
xmlui.dri2xhtml.METS-1.0.item-notadetesis.item
Doctor en Ciencias mención Matemáticas
Identifier
URI: https://repositorio.uchile.cl/handle/2250/189554
Collections
The following license files are associated with this item:
Contruccion-de-modelos-de-Gelfand.pdf (2.242Mb)