3,4-dihydroxyphenylacetic acid, a microbiota-derived metabolite of quercetin, protects against pancreatic beta-cells dysfunction induced by high cholesterol
Artículo
Publication date
2015Metadata
Show full item record
Cómo citar
Carrasco Pozo, Catalina
Cómo citar
3,4-dihydroxyphenylacetic acid, a microbiota-derived metabolite of quercetin, protects against pancreatic beta-cells dysfunction induced by high cholesterol
Abstract
Cholesterol plays an important role in inducing pancreatic beta-cell dysfunction, characterized by an impaired insulin secretory response to glucose, representing a hallmark of the transition from pre-diabetes to diabetes. 3,4 dihydroxyphenylacetic acid (ES) is a scarcely studied microbiota-derived metabolite of quercetin with antioxidant properties. The aim of this study was to determine the protective effect of ES against apoptosis, mitochondrial dysfunction and oxidative stress induced by cholesterol in Min6 pancreatic beta-cells. Cholesterol decreased viability, induced apoptosis and mitochondrial dysfunction by reducing complex I activity, mitochondrial membrane potential, ATP levels and oxygen consumption. Cholesterol promoted oxidative stress by increasing cellular and mitochondrial reactive oxygen species and lipid peroxidation and decreasing antioxidant enzyme activities; in addition, it slightly increased Nrf2 translocation to the nucleus. These events resulted in the impairment of the glucose-induced insulin secretion. ES increased Nrf2 translocation to the nucleus and protected pancreatic beta-cells against impaired insulin secretion induced by cholesterol by preventing oxidative stress, apoptosis and mitochondrial dysfunction. Nrf2 activation seems to be involved in the mechanisms underlying the antioxidant protection exerted by ES in addition to preventing the disruption of antioxidant enzymatic defenses. Although additional in vivo experiments are required, this metabolite is suggested as a promising drug target for the prevention of the pathological development from a pre-diabetic to a diabetic state.
General note
Artículo de publicación ISI
Patrocinador
Fondecyt Initiation into
Research Grant 11130232 and Australian NHMRC 0494825 and 1029178.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/132396
DOI: DOI: 10.1016/j.yexcr.2015.03.021
Quote Item
Experimental Cell Research 334 (2015) 270 – 282
Collections
The following license files are associated with this item: