About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Mathematical modeling of the dynamic storage of iron in ferritin

Artículo
Thumbnail
Open/Download
IconSalgado_J_Cristian.pdf (3.726Mb)
Publication date
2010-11-03
Metadata
Show full item record
Cómo citar
Salgado, J. Cristián
Cómo citar
Mathematical modeling of the dynamic storage of iron in ferritin
.
Copiar
Cerrar

Author
  • Salgado, J. Cristián;
  • Olivera Nappa, Álvaro;
  • Gerdtzen Hakim, Ziomara;
  • Tapia, Victoria;
  • Theil, Elizabeth C.;
  • Conca Rosende, Carlos;
  • Núñez González, Marco;
Abstract
Background: Iron is essential for the maintenance of basic cellular processes. In the regulation of its cellular levels, ferritin acts as the main intracellular iron storage protein. In this work we present a mathematical model for the dynamics of iron storage in ferritin during the process of intestinal iron absorption. A set of differential equations were established considering kinetic expressions for the main reactions and mass balances for ferritin, iron and a discrete population of ferritin species defined by their respective iron content. Results: Simulation results showing the evolution of ferritin iron content following a pulse of iron were compared with experimental data for ferritin iron distribution obtained with purified ferritin incubated in vitro with different iron levels. Distinctive features observed experimentally were successfully captured by the model, namely the distribution pattern of iron into ferritin protein nanocages with different iron content and the role of ferritin as a controller of the cytosolic labile iron pool (cLIP). Ferritin stabilizes the cLIP for a wide range of total intracellular iron concentrations, but the model predicts an exponential increment of the cLIP at an iron content > 2,500 Fe/ferritin protein cage, when the storage capacity of ferritin is exceeded. Conclusions: The results presented support the role of ferritin as an iron buffer in a cellular system. Moreover, the model predicts desirable characteristics for a buffer protein such as effective removal of excess iron, which keeps intracellular cLIP levels approximately constant even when large perturbations are introduced, and a freely available source of iron under iron starvation. In addition, the simulated dynamics of the iron removal process are extremely fast, with ferritin acting as a first defense against dangerous iron fluctuations and providing the time required by the cell to activate slower transcriptional regulation mechanisms and adapt to iron stress conditions. In summary, the model captures the complexity of the iron-ferritin equilibrium, and can be used for further theoretical exploration of the role of ferritin in the regulation of intracellular labile iron levels and, in particular, as a relevant regulator of transepithelial iron transport during the process of intestinal iron absorption.
General note
Artículo de publicación ISI
Patrocinador
This work was partially supported by the Millennium Scientific Initiative ICM project P05-001-F, FONDECYT Research Initiation Grant 11080016 and FONDECYT Projects 1070840 and 1050048. AO-N was supported by an ICDB post-doctoral fellowship.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/119216
ISSN: 1752-0509
Quote Item
BMC SYSTEMS BIOLOGY, Volume: 4, Article Number: 147, 2010
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account