Show simple item record

Authordc.contributor.authorBehn Von Schmieden, Antonio 
Authordc.contributor.authorRodríguez, Rubí E. es_CL
Authordc.contributor.authorRojas Rodríguez, Anita María es_CL
Admission datedc.date.accessioned2014-01-27T14:51:19Z
Available datedc.date.available2014-01-27T14:51:19Z
Publication datedc.date.issued2013-03
Cita de ítemdc.identifier.citationJournal of Pure and Applied Algebra 217 (2013) 409–426en_US
Identifierdc.identifier.otherdoi: 10.1016/j.jpaa.2012.06.030
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/119707
General notedc.descriptionArtículo de publicación ISI.en_US
Abstractdc.description.abstractWe prove that given a finite group G together with a set of fixed geometric generators, there is a family of special hyperbolic polygons that uniformize the Riemann surfaces admitting the action of G with the given geometric generators. From these special polygons, we obtain geometric information for the action: a basis for the homology group of surfaces, its intersection matrix, and the action of the given generators of G on this basis. We then use the Frobenius algorithm to obtain a symplectic representation g. of G corresponding to this action. The fixed point set of g, in the Siegel upper half-space corresponds to a component of the singular locus of the moduli space of principally polarized abelian varieties. We also describe an implementation of the algorithm using the open source computer algebra system SAGE.en_US
Patrocinadordc.description.sponsorshipFONDECYT grants 1100113 and 1100767.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherElsevieren_US
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectFuchsian-Groupsen_US
Títulodc.titleAdapted hyperbolic polygons and symplectic representations for group actions on Riemann surfacesen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile