Adapted hyperbolic polygons and symplectic representations for group actions on Riemann surfaces
Author
dc.contributor.author
Behn Von Schmieden, Antonio
Author
dc.contributor.author
Rodríguez, Rubí E.
es_CL
Author
dc.contributor.author
Rojas Rodríguez, Anita María
es_CL
Admission date
dc.date.accessioned
2014-01-27T14:51:19Z
Available date
dc.date.available
2014-01-27T14:51:19Z
Publication date
dc.date.issued
2013-03
Cita de ítem
dc.identifier.citation
Journal of Pure and Applied Algebra 217 (2013) 409–426
en_US
Identifier
dc.identifier.other
doi: 10.1016/j.jpaa.2012.06.030
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/119707
General note
dc.description
Artículo de publicación ISI.
en_US
Abstract
dc.description.abstract
We prove that given a finite group G together with a set of fixed geometric generators, there is a family of special hyperbolic polygons that uniformize the Riemann surfaces admitting the action of G with the given geometric generators. From these special polygons, we obtain geometric information for the action: a basis for the homology group of surfaces, its intersection matrix, and the action of the given generators of G on this basis. We then use the Frobenius algorithm to obtain a symplectic representation g. of G corresponding to this action. The fixed point set of g, in the Siegel upper half-space corresponds to a component of the singular locus of the moduli space of principally polarized abelian varieties. We also describe an implementation of the algorithm using the open source computer algebra system SAGE.