Adapted hyperbolic polygons and symplectic representations for group actions on Riemann surfaces
Artículo
Open/ Download
Publication date
2013-03Metadata
Show full item record
Cómo citar
Behn Von Schmieden, Antonio
Cómo citar
Adapted hyperbolic polygons and symplectic representations for group actions on Riemann surfaces
Abstract
We prove that given a finite group G together with a set of fixed geometric generators, there is a family of special hyperbolic polygons that uniformize the Riemann surfaces admitting the action of G with the given geometric generators. From these special polygons, we obtain geometric information for the action: a basis for the homology group of surfaces, its intersection matrix, and the action of the given generators of G on this basis. We then use the Frobenius algorithm to obtain a symplectic representation g. of G corresponding to this action. The fixed point set of g, in the Siegel upper half-space corresponds to a component of the singular locus of the moduli space of principally polarized abelian varieties. We also describe an implementation of the algorithm using the open source computer algebra system SAGE.
General note
Artículo de publicación ISI.
Patrocinador
FONDECYT grants 1100113 and 1100767.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/119707
DOI: doi: 10.1016/j.jpaa.2012.06.030
Quote Item
Journal of Pure and Applied Algebra 217 (2013) 409–426
Collections