About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Copper and zinc as modulators of neuronal excitability in a physiologically significant concentration range

Artículo
Thumbnail
Open/Download
IconAedo_Felipe.pdf (733.6Kb)
Publication date
2007
Metadata
Show full item record
Cómo citar
Aedo, Felipe
Cómo citar
Copper and zinc as modulators of neuronal excitability in a physiologically significant concentration range
.
Copiar
Cerrar

Author
  • Aedo, Felipe;
  • Delgado Arriagada, Ricardo;
  • Wolff Fernández, José;
  • Vergara Montecinos, Cecilia;
Abstract
Evidence from several areas of neuroscience has led to the notion that copper and zinc could be modulators of neuronal excitability. In order to contribute to test this idea, we characterized the changes induced by these divalent metal ions on the extracellularly recorded action potential firing rates of undissociated olfactory epithelium neurons. Our main finding is that at low concentrations, 1-100 nM for Cu2+ and 1-50 mu M for Zn2+, they induced a concentration dependent increase in the neuronal firing rate. In contrast, at higher concentrations, 1-5 mu M for Cu2+ and 100-500 mu M for Zn2+, they decreased the firing rate. Based on these and previous results of our laboratory we propose that the biphasic effect of Cu2+ and Zn2+ exposure on neuronal firing may be explaint d by the interaction of these ions with high and low affinity sites in sodium channels whose occupancy leads to activation or inhibition of the sodium current, which is consistent with the proposed modulatory role of these metal ions on neuronal excitability. (c) 2000 Elsevier Ltd. All rights reserved.
General note
Publicación ISI
Identifier
URI: https://repositorio.uchile.cl/handle/2250/118712
Quote Item
NEUROCHEMISTRY INTERNATIONAL Vol. 50 MAR 2007 4 591-600
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account