Amyloid beta-Peptide Oligomers Stimulate RyR-Mediated Ca(2+) Release Inducing Mitochondrial Fragmentation in Hippocampal Neurons and Prevent RyR-Mediated Dendritic Spine Remodeling Produced by BDNF
Artículo
Open/ Download
Publication date
2011-04Metadata
Show full item record
Cómo citar
Paula Lima, Andrea
Cómo citar
Amyloid beta-Peptide Oligomers Stimulate RyR-Mediated Ca(2+) Release Inducing Mitochondrial Fragmentation in Hippocampal Neurons and Prevent RyR-Mediated Dendritic Spine Remodeling Produced by BDNF
Author
Abstract
Soluble amyloid beta-peptide oligomers (A beta Os), increasingly recognized as causative agents of Alzheimer's disease (AD), disrupt neuronal Ca(2+) homeostasis and synaptic function. Here, we report that A beta Os at sublethal concentrations generate prolonged Ca(2+) signals in primary hippocampal neurons; incubation in Ca(2+)-free solutions, inhibition of ryanodine receptors (RyRs) or N-methyl-d-aspartate receptors (NMDARs), or preincubation with N-acetyl-L-cysteine abolished these signals. A beta Os decreased (6 h) RyR2 and RyR3 mRNA and RyR2 protein, and promoted mitochondrial fragmentation after 24 h. NMDAR inhibition abolished the RyR2 decrease, whereas RyR inhibition prevented significantly the RyR2 protein decrease and mitochondrial fragmentation induced by A beta Os. Incubation with A beta Os (6 h) eliminated the RyR2 increase induced by brain-derived nerve factor (BDNF) and the dendritic spine remodeling induced within minutes by BDNF or the RyR agonist caffeine. Addition of BDNF to neurons incubated with A beta Os for 24 h, which had RyR2 similar to and slightly higher RyR3 protein content than those of controls, induced dendritic spine growth but at slower rates than in controls. These combined effects of sublethal A beta Os concentrations (which include redox-sensitive stimulation of RyR-mediated Ca(2+) release, decreased RyR2 protein expression, mitochondrial fragmentation, and prevention of RyR-mediated spine remodeling) may contribute to impairing the synaptic plasticity in AD.
General note
Artículo de publicación ISI
Patrocinador
Fondecyt 3085025
1060177
1100176
CONICYT-FONDAP 79090021
Fondecyt-FONDAP 15010006
Millennium Nucleus P07-048-F
CHDI-HighQ Foundation
Conselho Nacional de Desenvolvimento Cientifico e Tecnologico
Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro
Instituto Nacional de Neurociencia Translacional
Identifier
URI: https://repositorio.uchile.cl/handle/2250/128920
DOI: DOI: 10.1089/ars.2010.3287
ISSN: 1523-0864
Quote Item
ANTIOXIDANTS & REDOX SIGNALING Volume: 14 Issue: 7 Pages: 1209-1223 Published: APR 2011
Collections